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Smectic blue phases: Layered systems with high intrinsic curvature
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We report on a construction for smectic blue phases, which have quasi-long-range smectic translational order
as well as three-dimensional crystalline order. Our proposed structures fill space by adding layers on top of a
minimal surface, introducing either curvature or edge defects as necessary. We find that for the right range of
material parameters, the favorable saddle-splay energy of these structures can stabilize them against uniform
layered structures. We also consider the nature of curvature frustration between mean curvature and saddle

splay.
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I. INTRODUCTION Here, we refine our earlier model through variations on
the original construction. We find that by allowing edge dis-
Topological defects and liquid crystal phases are hopelocations our phase is stabilized for even snmakgative
lessly intertwined. Historically, the nematic phase derivedvalues of the saddle-splay constdy,. This paper is orga-
i's name from the observation of long disclination lines. In nized as follows. In Sec. Il we discuss the rotationally invari-
some liquid crystal phases, such as the twist-grain-boundagnt energetics of layered systems and derive detailed equa-
(TGB) phases and blue phases, these defects are not simgigns for the geometric frustration between curvature and
artifact or nuisance, but instead act to stabilize the directouniform layer spacing. Next, in Sec. Ill, we calculate the
field configuration. While the TGB phases have smectic orenergy and stability of likely smectic structures based on our
der, the blue phases have purely nematiclike order created tyiginal constructiorf10]. To supplement our analytical cal-
a long range, triply periodic lattice of line defects. Two of the culations, we present the results of simplified numerical so-
nematic blue phases possess cubic symn{&@1 and BP2 lutions for the three-dimensional smectic structure, which
while the third (BP3J is thought to be an isotropic melt of explore relaxation of the smectic layers away from our con-
double-twist cylinderg1,2]. Recently, new phases of matter structions. In Sec. IV we present a construction for filling
have been identified that possess the quasi-long-range trargpace based on uniform layer spacing away from a minimal
lational order of smectics[3] in addition to three- surface. First we derive formulas for the evolution of curva-
dimensional orientational order. These phases, dubbed tHere fields in layered space and then we employ the Weier-
“smectic blue phases,” have been observed for molecules istral3 analytic representation of minimal surfaces to calculate
the chiral series FH/FH/HHBTMHC, wheren is the ali-  the energies for our proposed phase. We complete our de-
phatic chain length. Three distinct smectic blue phases hawcription by calculating the core energy and argue that tilt-
been observed near the isotropic transition of these congrain boundaries form at the cores of our structures. Numer-
pounds: BRs1 has cubic symmetry, BR2 has orthorhom- ics are also presented for this construction. Finally, in Sec. V
bic symmetry, and B§,3 is isotropic[4]. The precise physi- We calculate the Fourier transform of the smectic density and
cal properties of these materials have been the study dfompare it with experimental x-ray results. In Appendix A
intense investigation in recent yedrs—7]. we derive curvature evolution equations in curved space and
In general, since smectic order is incompatible with cubicin Appendix B we review the Weierstral3 representation for
symmetry, it is expected that any triply periodic crystalline completeness.
structure must include smectic dislocations as well as discli-
nations. However, attempts to construct smectic double-twist Il. ENERGETICS AND CONSTRUCTION
cylinders[8] and assemble them into traditional blue phase o
structureg9] present a variety of difficulties, most notably a  The similarity between the crystal structures and phase
disagreement with precise experimental detdls In previ- ~ diagrams of the nematic and smectic blue phases suggests
ous work[10] we proposed a model for the smectic b|uethat,. .I|ke the nematic blue phases, the smectic phases. are
phases. Our construction filled space with concentric miniStabilized through saddle splay. The key to our construction
mal surfaces wrapping a lattice of intersecting line defectsiS the observation that saddle splay and Gaussian curvature
We found that when the saddle-splay constant was larg@re identica[11] for layered systems with uniform spacing.
enough, these new structures were stable. Though the nelie saddle-splay energy of a unit director fiélds [9]
materials were chiral, our construction did not rely on mac-
roscopic chirality as in the traditional blue phases. Instead,
the smectic compression and bending energies set the length
scale of our solutions.

Foe K24J XV [(N-VN-N(V-N)], (D)

whereK,, is a Frank constant. In a layered system, we can
rewrite the expression foFgg in a more useful form by
*Electronic address: kamien@physics.upenn.edu employing a local coordinate system where one direction is
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parallel to the local layer normdl. This frame is appropri-
ate in the limit where the nematic director and the layer
normal are locked. Then E@l) becomes

Fss:_2K24f dnj dx dyvgn(X,y) an(X,y)Kn(X,y),
2

wheren is the Lagrangian coordinate which labels the layers,
a,(x,y) is the local layer spacing ak{y), K,, is the Gauss-
ian curvature of theth surface, and, is the determinant of
the two-dimensional, induced, surface metric. In the special 5 1 vinimal surface repeat unitéa) P surface,(b) I-Wp
case thata,(x,y) is constant, the integral becomes purely g tace.

topological: a consequence of the Gauss-Bonnet theorem

[11] is that for a surface of genwg the integrated Gaussian hig case, the first result in E) implies 9H/da=0 if and

curvature is 4r(1—g). Sinceg>0 for any infinite surface only if the principal curvatures; satisfy
[12], Fgsis large and negative wheld,,<0 and the unit '

cells contain surfaces with large genus, i.e., many handles K2+ Kk2=0, (6)

and holes. Note that here, the saddle splay is a measure of the

layer normals and not the nematic director. When the nemie,, x,;=«,=0. Thus ifK#0 and the layer spacing is uni-
atic director follows the layer normal these are, of courseform, thengH/da+# 0; Gaussian curvature leads to mean cur-
equivalent. As discussed in R¢L0], in type-Il smectics itis  vature.

possible for the saddle splay of the director field to differ in  For uniform spacing the evolution equations become par-
its precise numerical value from the saddle splay in the layticularly simple. The variatiorsa is constant and the equa-

ers. - _ tions can be integrated:
In addition to the saddle splay, we must include the rota-

tionally invariant bulk free energy H+aKg

H(a)=————,
B (@) 1+2aH+a’Kg
Fszf d3x Z[(V<1>)2—1]2+2K1H2 : €)
Ke(@)= ——— O @
i ity i i a)= .
where the smectic density js<cos(2rd/ay), P(X,y,z) is a G 1+ 2aH+aKg

phase field,a, is the layer spacingB is the compression
modulus, K, is the bend modulus, and=3V-N is the
mean curvature of the layers. If the two principle curvature
arek; and k,, Kg= K1k, andH=(x1+ k5)/2 [11].

Alternatively, this evolution follows from the observation

Yhat if the principle radii of curvature arE1=K1_1 andR,

Together, Eqs(2) and (3) favor configurations with uni- K, * for one surface then the radii for the surface displaced
’ py a along the local normal arg;(a) =R;+a. Thus, in lay-

form layer spacing, low mean curvature, and high Gaussia ) . S
curvature. However, there is an unavoidable geometric frus(-eer systems, Gaussian curvature in one region implies mean
urvature in another. Furthermore, as we continue to develop

tration between these three terms. When a surface is diéi—1 initial | h il b inqulari
placed along its normal byja, the changes in the metric and 1€ Initial layer, there will be a curvature singularity at a

curvature tensors afd3] distanceg:(—Hi\/HZ—KG)/KG normal to the original
surface, i.e., at one of the radii of curvature.
89i;=2k;; 4a, With these geometric constraints in mind, we construct a
solution which strikes a promising balance between mean
okijj=—ViVjoa+ KikK}‘b‘a. 4) and Gaussian curvatures. To do this, we build the smectic

order by adding layers on top of a triply periodic minimal
It is straightforward to find the variation in the mean andsurface. By starting with a minimal surface, we bias our

Gaussian curvatures: structures to have a low total mean curvature energy. In Ref.
y [10], we based our construction on the Schwartz P surface,
SH=[Kg—2H?]sa—3g"VV;da, pictured in Fig. 1a). In this paper, we present calculations
. for both the P surface and Schoen’s I-Wp surface, pictured in
6Kg=—2KgH da— KIJViVj oa, (5) Fig. 1(b), a surface with a larger genus and thus a more

. negative saddle splay energy. The P surface is an archetypal
whereV; is the covariant derivative on the surface adlfl  triply periodic minimal surface and will provide a basis of
=Xl iy 1], where €'l is the completely antisymmetric comparison with earlier results, while the I-Wp surface
tensor. shares the symmetries of experimentalgSisystemg6]; the

If we impose smectic order, thesm may also be inter- latter will also prove to be more stable than the P surface. We
preted as the normal distance between adjacent layers. Whevill consider two variations of this construction: in the first
the spacing is uniformiN- V& is constant and;da=0. In  we will allow the layer spacing to vary, while in the second
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FIG. 2. (Color onling In (a)
we show the P surface translated
inward until self-intersection. In
(b) and (c), the I-Wp surface is
translated inward and outward, re-
spectively. Figuregd) and (e) in-
dicate the line defect structure for
our construction, based on skeletal
graphs.

we do not. In the former we find that the cores are composedf topology and equal spacing are exactly those best satisfied
of topological line defects, while in the latter we find that by the skeletal graph of the minimal surfacet]. We take

domain walls form in the relatively larger cores. the core region around the defect lines to have a radius of
orderag, the smectic layer spacing. We model the core as a
Ill. SMALL-CORE MODEL: SELF-SIMILAR LAYERING melted region of smectic with a free energy arising from the

condensation energy.

Finally, we fill the region between minimal surface and

In this section we consider space-filling, layered struc-defects with continuous layers. We desire to have as little
tures in which each layer is continuous and every layer hamean curvature as possible in this region, so we fill the re-
the same global topology. We begin with a minimal surfacegion with dilated copies of the original minimal surface. In
and devise an explicit construction for filling the region awayorder to do this, we must cut the continuous minimal surface
from that surface. We note that our bulk phase must contaiinto smaller patches: we cut the surface along lines where
line defects, since at some point the curvature will divergepne surface tangent is parallel to the line defect structure, and
as is implied by Eqgs(7). By design, the layers immediately dilate it so that it shrinks onto the vertices where defect lines
surrounding these line defects will have the same topology asieet. The separated minimal patches are connected together
the original surface. Therefore, the next logical step in outby cylindrical patches parallel to the line defects. When there
construction is to guess the optimal line defect structure. are disclinations, we must also add some flat patches to com-

Besides selecting the correct topology, we should choosplete the surfaces. Thus the surface tangents are continuous
a defect complexion that minimizes the compression energgverywhere, and the intermediary structures transform
in the region between the minimal surface and the defects: gmoothly from the minimal surface on the outside to a set of
should, as much as possible, be equidistant from the minimalylinders surrounding line defects on the inside. This con-
surface at each point. Thus, an ansatz for the optimal strustruction fills space completely, at the expense of uniform
ture is generated by uniformly translating the minimal sur-spacing. Moreover, we have filled a large part of space with
face along its normal until it self-intersects, as shown in Fig.minimal surfaces and so the curvature energy is likely to be
2. The line defects will be disclinations of chargel or  as small as possible, given the necessary curvature defects.
+1/2. In the case of charge 1 disclinations the layers im- Figure 3 shows how this construction works for the P and
mediately surrounding them are tight cylinders. From Fig.I-Wp surfaces. For the P surface it is particularly simple; its
2(a), we see that the defects in the P surface aretdll construction is shown in Fig.(8). The line defects are along
From Figs. 2b) and Zc), we see that the defects inside the the edges of the unit cell and through the center parallel to
I-Wp surface should have chargel, but that outside, the the edges. The inside of the P surface is filled with dilated
translated layer approaches itself in a plane rather than on@opies of the P surface repeat unit, cut at its intersection with
line and so the disclination charge-sl/2. Figures &) and  the walls of the unit cell. The edges of the dilated P surface
2(e) show our proposed defect structures. For the defectopies are connected to neighboring cells with cylinders. The
structure outside the I-Wp surface, the location of the inter-outside of the P surface is a translated copy of the inside. The
section of defect lines is a variable chosen to minimize thd-Wp surface is more complicated, requiring different con-
total compression energy. It should be noted that in the cassructions for outside and inside as well as having beth
where all defects happen to be chargé, our requirements and+ 1/2 defects. Figure(®) illustrates the construction in-

A. Geometric construction
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(a) (b)

FIG. 3. (Color online Small-core constructiofa) Partial layers inside the P surfa¢b) one layer inside the I-Wp surface, atal partial
layer around one octant outside the I-Wp surface. Each color corresponds to a different connected (ayemdr(c), the boundaries
between minimal surface patches, cylinders, and planes are drawn in heavy black. The defect networks and vertex points are also shown.

side the I-Wp surface: the minimal surface is divided at cuts o L3 p
that can be smoothly attached to cylinders, then dilated to- Fcore“b{ 2 lic? (1— ?C te—— =, 9
wards either the center or corners of the unit cell. Figuyoe 3 lines (R) (RY* 7

shows the construction outside the I-Wp surface. The surface ) _ ) ) )
is cut along its mirror symmetry planeg=y, x=—y, wheree is a line tension. The first term is the energy of the

—z, etc. andx=0, y=0, andz=0. The resulting patches defect lines, the second is the energy of the central, melted
are dilated around the proper vertices in Fie)2The edges €gion around vertices in the defect network. Again, we have

of the patches are connected together with cylinders paralléjsed the characteristic radi¢R) to allow us to generalize

to the + 1/2 edge defects. Finally, the free edges of the cyl-the discussion of the energetics. _
inder are connected together into planes. Since the saddle splay is a surface term, we calculate it by

Most of the energetics of this structure are simple to caldntegrating the strength of the nematic defects along the total
culate; exact values are tabulated in Table I. It is instructivdength of defect core. Because the saddle splay is a total
to derive approximate expressions for these energies so thdivergence, the volume integral becomes a surface integral
we may quickly assess the feasibility of a given minimala@round the defect:
surface as a starting point for our construction.

The total curvature energy comes from the contribution of _ __ g Pe
the cylindrical connecting patches. Since the cylinders be- FSS_ZKZ‘J : dSVZWKZA[ E i (1 (R>>' (10
come progressively longer to connect the ever shrinking
minimal surfaces, the bending energy of the cylinder of ra-Comparison to Eq(8) shows that these smectic structures
diusr is proportional to R—r), the length. We find that will favor charge+ 1/2 structures when possible. Also, for all

constructions which only utilizet+1 defects, the ratio of

lines

E %} II(R_r)drdG saddle splay to curvature energy will be approximately
B2t Rr 2K 54l K.
The only energy not explicitly determined by our con-
- 2 @ Pe struction is the compression energy. Though the layering is
~aKq > 1,c?|[In + . ¥ _ nene _ {
lines Pc (R) largely constrained, there is still one free variable which

gives the relative dilation of consecutive surfaces. We mini-

mize the compression energy with respect to the relative
where the sum is over defect linésis the length of ling, c; smectic layer spacing as a function of position. In the fol-
is the charge of the defegi, is the core diameter of the line lowing we show how we can take advantage of the dilational
defect, andR) is the characteristic radius of the cylindrical symmetry of our construction to greatly simplify the exact
regions. This form allows us to consider other structuresalculation of optimal compression energy.
without relying on the details of the fiducial surface and just First we consider the compression energy in a subregion
on the rough length scaleR ). The core energy, which is which is filled with self-similar, radially dilated patches of
simply a condensation energy density, is approximately = minimal surface. Each successive layer in this region is a

TABLE I. Smectic energy per unit cell for P and I-Wp surface constructions. The first column gives the topological genus per unit cell
of the structureFg is the total curvature energlssis the saddle spla¥;.,c IS energy of the defect cores, aRd is the total compression
energy.

Surface Genus Fg/(K,L) Fss/(JKo4L) Feorele Fc/(BL®)
P 3 6l IN(L/4po) + (4pe /L —1)] —12m(1—4p, /L) 6(L—4po)+(64/m)p.  4.32¢10 2
I-Wp 7 31.7IN(L/6.3p.) + (.30, /L—1)]  —68.9(1-6.30./L)  9.05L—6.1p)+72.20,  4.85<10 2
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smaller version of the last, and all are centered on a common 1
origin. Thus, if the radial coordinates of the outermost sur-  Fc patchZEBf dZ[£310—211A(0) +1,4%(0)}], (16)
face of this region are specified by a functigy{ 4, ¢), then
the radial coordinates of any interior surface are given by
={ro(6,¢), wheree[0,1] parametrizes the layers. Fur-
thermore, every point within this region has a unique value
of 0, ¢, and ¢ and con\_/(_arsely the valpes of ¢, an'dg“ lN:J dQrd(6,4)pN(6, ).
uniquely specify the position of any point in the region, so
we can use these three variables as a coordinate frame on the
patch. In these coordinates, each layer is a surface of coffimple consideration shows that a similar separation occurs
stant. in regions with cylindrical symmetry, in which case

In the continuum description of the smectic, the layers are= {fo(#) and|V®| is independent of the localcoordinate.
surfaces of constar. Sinced is constant on each smectic The equations are similar to the above. Numerical values
|ayer, which iS, in turn, a |ayer of Constag],t it follows that were calculated with the aid of tHURFACE EVOLVER SoOft-
®=d(¢) is purely a function off. Our goal is to find the Wware packagd15]. We minimize the totaFc by varying
form of ® () which minimizes the compression energy. This With respect toA(£). The results are tabulated in Table I.
is nontrivial, since the compression energy goesvab,  The total compression energy had only a very weak depen-
which is not purely a function of. However, we can find a dence on the core siz, for ap<L.
combination of| V®| times a function of angle which to-  Calculations of the compression energy depend greatly on

gether is constant over each smectic layer. First we obsern/8€ particulars of the surface shape, so we cannot give an
that accurate approximate expression . In general, how-

ever, the total compression energy should increase rapidly
J d r with genus. Since all layers in this construction have the
)=>&—§¢(§)=Fo( 9,¢)E¢(m)- same topology, there must be just as many layers in the cy-
(11) lindrical regions, of radiugR), as there are in the minimal
surface patch regions, which have typical radius of order
Then we note that for level surfaces &f the field of unit L/4. As the genus increases, the number of cylindrical
normals isN=V®/|V®| to write handles increases, as will the difference betwéRh and
L/4. This, in turn, will increase the overall compression en-
r ergy.
m) For our proposed smectic structure to be stable against the
uniform flat phase, the positive energy contributions from
_ i@(g) Fc, Fg, andF e must _be compen;ated by a I_arge negative
ro(6,¢) a¢ saddle splay energy. Since there is no chirality in our con-
struction, the unit cell length can only arise as a result of the

wherely are moments of the minimal surface shape,

r
‘M):‘D(ro(e.@

J
(roN)|V<I)|=ra—r<D(

_ iq) (12) different scalings of these energies. We found that the scaling
—§(9g (0. competition between the core and saddle splay energies was
This shows that the combinatiom-(N)|V®| depends only 18 —
on £, and so is constant over each smectic layer. We car | i |
therefore write i
14 + } .
(V®)?=p(6,$)A(Q), (13 12k i 1
|
with 87 ! STABLE ]
8t i 1
ro( 8o, $0) - N(fo, ¢o) |2 <
p(o, )= : (14 6f 4 :
ro(6,¢)-N(6,¢) \ Pand -Wp
) ar 'Wp . y
A=AV P 45,6, (15 2l - ]
where (¢, $,) is a reference direction antly, is a normal- %, 5 10 15 20 25 %0 35 40
ization constant which adjusts for differences between refer- |K24|/K1

ence directions on different patches. The absolute value o

Ay is unimportant, but its relative value on different surface |G, 4. Stability diagram for unit cells with =50a,. Our con-
patches must be chosen for a consistent definition @f) structions based on P and I-Wp surfaces can be stabilized against
across the entire smectic surface. Thus we have separated i layering in the regions of parameter space to the upper right of
angular dependence out of the volume integraVdb. The  the, respectively, labeled lines. The quanite VK /B is the pen-
result is etration length.
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A o

5.

FIG. 5. (Color onling Numerical minimization results with parallel defect boundary conditions. Imégesnd (c) show two different

smectic layers for a relaxed configuration of the I-Wp surface. Surface coloring is proportional to local curvature energy density, with blue

and violet denoting the highest values. Rlox shows the strongest Fourier components inkje0 plane for this smectic configuration.

capable of generating a length scalelof50a,, giving a  gradient method. Because of the troublesome nature of de-
preferred cell size for the P and I-Wp surfaces of the order ofining and allowing defects in such a phase field simulation,
as well as the relatively small grid size, the numerical values

_L_ 12m[Koq| +[16/m—6]e in these simulations cannot be considered precise. However,
P— -~ _ ’ (17) . P . .
ag 27Ky —¢ study of the numerical minimal energy configurations are
instructive for both validating and expanding upon our mod-
L 72Ky —2.8 els.

WpE—~ e —— 18
I-Wp ao 7.dK24|_8 ( )

We imposed parallel boundary conditions on the smectic
field at the defect linesin other words, the defect lines be-
We compare the total energy of the minimal surface smeccome surfaces of constant phasghis corresponds to our
tics against that of uniform smectic configuration. Figure 4«gma||-core” construction. The results are pictured in Fig. 5.
shows the exact stability diagram of both the P and I-Wprpe shading indicates local bending energy density. For
surfaces, assuming a crystal unit cell lendth-50a, 10 g/ relatively small, the middle surface between inner and
make contact with e_xperlment. There are stable solutions O(Suter defect lattices is close to a minimal surface. For layers
the P surface smectic for values|éf,,|/K,>6.5 and for the away from the middle surface, such as that pictured in Fig.
I-Wp surface smectic for values gK|/K;>2.7. 5(a), the curvature energy is concentrated around the cylin-
_ R drical regions, while the remaining areas are close to mini-
B. Numerical minimization mal surfaces. Figure(B) shows the strong Fourier compo-
In order to study elastic relaxation away from our simpli- nents in thek,=0 plane for the I-Wp surface smectic. The
fied construction, we performed a numerical minimization ofnumerically relaxed configurations for moderate values of
the smectic energetics of Eg$l) and (3) on a three- \=.K;/B~1 andL/ay~40 layers per unit cell had a struc-
dimensional grid. The smectic field was represented by #&ure reminiscent of the experiments of Paredal. [6]: in
single value of the phask at each point on a 41 or 128 unit their data they found that in an angular scan away from the
cubic grid with periodic boundary conditions. Discretized maximum peaks the maximum intensity moved out to larger
energy expressions were used to calculate the local values ofagnitudes in reciprocal space. We find this same off-peak
compression, curvature, and saddle splay energy. We manincrease for|kny.{6,#)| for the relaxed configurations in
ally put line defects into our lattice which forced the P sur-this model.
face or I-Wp surface topology, similar to the analysis in Ref. For higher values oB/K;, such as in Fig. &), the
[16]. The energy was then minimized by the conjugate-smoothly curved regions of our construction start to become

FIG. 6. (Color online A one
parameter model for curvature
condensation to balance curvature
and compression energies.
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127K, In(L/4p¢) A
X= =0.94—, (20)
(4.32x10 ?)BL? ap

where the last equality is fdr=50a,. Sincex=a, and this
treatment is only valid foly<1, we see that curvature con-
densation will not happen for our small smectic repeat unit,
but might occur forL>50a,.

IV. LARGE-CORE MODEL: CALCULATION OF
CURVATURE ENERGIES USING WEIERSTRASS
REPRESENTATION

A. Geometric construction

The large-core variant of our construction begins with a
single continuous surface, then adds successive layers which
are equally spaced along the original surface normals. As we

FIG. 7. (Color onling Construction of smectic blue phase based showed in Sec. Il, the continuation of uniform layer spacing
on uniform layer spacing of the Schwartz P surface. The imagavill eventually lead to singularities. Figure 7 shows the re-
shows a cutaway of the layered structure inside the P surface. sults of this construction for the interior of a P surface sec-
. . . tion. The initial curvature singularities occurs on the nearly
faceted, with the curvature condensing onto discrete foldS;j o ar interface between unit cells of the P surface: essen-
This is not unlike the condensation of curvature found iNgayy the circular interface shrinks to a point, pinching off
crumpled elastic sheet§l7]. Motivated by this apparent e connection between the interior layers and the outside of
tradeoff between curvature and compression energies, We e¥:o nit cell. Any further layers within the pinched layer
amined the model for relaxation pictured in Fig. 6, in which ot he topologically like a sphere, with genus 0. Note that
the regions of high curvature become more concentrated ify,is |ayering scheme appears similar to the construction of
space while the remaining overall sur_face becomes MOTEonstant mean curvatu(€MC) surfaceg 18] but is essen-
polyhedral. This model has one continuous parameter 5y gifferent: there is no energetic preference for constant
€[0,1] which interpolates between the minimal surfacenean curvature and the CMC surfaces do not minimize the
modc_el aty=1 and a face?ed surface_ with uniform I_ayer compression energy. We shall label the normal distance from
spacing away from tilt-grain boundaries g&0. In this e injtial minimal surface to the last fully connected surface

model, we shrink patches of the minimal surface onto Verti'asamax. Since the principal radii of curvature are equal and

ces of a polyhedron with the same symmetry. The paichegysosite for points on the minimal surface, the value of
are connected by cylindrical sections, and the remaining ar %maxl will be the same on both sides of the minimal surface.

is filled with flat facets. An expression for the compression\y,e “call the region within the pinch-off surface, at distance

energy of this structure, using our earlier techniques, is COMyreater thara,,,, from the minimal surface, the core region

plicated, but numerical evaluation for the P surface found itjnce our initial ordering is disrupted in this volume. Outside
was well approximated by a simple linear functiomyofThe }he core, the saddle splay energy per unit cellFigs

curvature energy i§ found by addin_g up the contributi(_)ns 0 16K/ (g— 1)amay. The values ofg and a,q, for the P
the _cyllndncal regions. We have |gnorgd _the gompllcatedand I-\Wp surfaces are given in Table II. Figuréa-20 show
nonlinear effec;s at IOW‘.’ SO our analy_5|s is valid neay the surfaces defined by, for both minimal surfaces.
=1. The resulting combined compression and curvature eMyjithin the pictured surfaces, the continuation of our initial
ergy density for the P surface smectic is construction produces additional curvature singularities and
- lines of surface self-intersection. At the end of this section
FotFe=(4.32¢107%)xBL° we justify a model for the core, which fills it with even layers

1 joined by tilt-grain boundaries.
+6mK L ;ln(L/4pc)+(4Pc/L_1) . (19 By insisting on uniform spacing away from the fiducial
minimal surface, we determine the exact shape of all the
Minimizing in x gives layers outside the core with no free parameters. Clearly, the

TABLE Il. Surface geometries and energies in the “large-core” construction for the P and I-Wp surfaces. The first column gives the
generating function for the Weierstral3 representation, followed by the maximum half-thickness of continuous layering, the curvature energy,
saddle-splay energy, and grain-boundary core energy for this ansatz.

Surface R(w, ) amax (L) Fg (KiL) Fss(/KzdL) Fos (Kiag'L?)
P (1+ 14o*+ ®) ~12 0.232 12.2 -23.3 1.65
I-Wp (08— Bw*—5w?+1)"%8 0.150 14.7 —45.2 1.36
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shape equations of all the layers can be obtained from that aff Sec. Ill. Around these lines the director field varies so
the original surface if we know how all quantities evolve rapidly that the smectic order should melt completely, leav-
with normal displacement. The curvature evolution was deing a core of radius-a, and line tensiore. The mean cur-
rived in Sec. Il. We can also map the area element of theature energy in the smectic domains is relatively small,
initial surface to that on successive surfacesddy =dA(1 since the shape of the innermost layers is mapped by7q.
+2aH+a’Kg). This allows us to express the curvature from the region around the umbili¢8at points on the mini-

component of the smectic free ener@ as mal surface. The inner layers are thus nearly flat. We found
) that the curvature energy was negligible by numerical evalu-
qmax (H + aKG) ation.
Fg=4K, da| dA———, (21 . . .
0 1+2aH+a%Kg The saddle-splay energy in the core merits special atten-

tion. Since the smectic layers in the core are not closed sur-
faces, our simple topological arguments do not apply. We
where the area integral is taken over the center surface. lgould insist on connecting the surface sections together in a
our case the area integral is over the minimal surface repeaatural way across grain boundaries to obtain closed surfaces
cellandH=0. We evaluated the surface integral in E21)  with the topology of a sphere. However, these closed sur-
analytically using the Weierstraf3 representation for the minifaces are nearly polygonal, with all the Gaussian curvature
mal surface§19,20, as described in Appendix B. Table Il concentrated at the vertices, or along the lines in three di-
gives numerical values for the bending energy using(Efi. = mensions where the smectic order has melted. Thus, it is
and the saddle-splay energies using the Gauss-Bonnahtural to assume that the smectic order parameter vanishes
theorem and Eq(2). In both cases the integration limit in these linelike cores, and the total saddle splay of the core
amax corresponds to the value of for which H' in  is nearly zero. Of course, nematic order would likely persist
Eq. (7) first diverges at some point on the surface. Thusjnside the core. Since we are focussing here on the saddle
amaxz(_Kgi”)—U% with Kgi“ the minimum (most nega- splay associated only with the smectic order, i.e., the local
tive) value ofKg on the minimal surface. Gaussian curvature, we have not considered the nematic
All that remains is to find the optimal way to fill the saddle splay. These two contributions are distinct and adding
“core” volumes for |a|>|ana,. The shape of these regions the latter would be straightforward but would complicate the

is shown in Figs. @—0. In the core, the continuation of discussion.
uniform layer spacing from the minimal surface leads to cur- The dominant free energy terms which determine the sta-
vature singularities and layer self-intersections. However, aBility and preferred size of this construction are therefore the
shown in Fig. 7, we can fill this volume with uniformly bend, saddle-splay, and grain-boundary energies. Minimizing
spaced domains of smectic order which intersect each othéfese energies in a unit cell of lengthgives
in tilt-grain boundaries. Within a domain, each point on a L=(|Fsd—Fg)/(2Fap)

given layer is an equal normal distance away from some TS B GB/:

point on the initial minimal surface. Points on the grain ¢ his |ength the phase is stable against the standard, flat

boundaries between domains are an equal normal distangc;xnecﬁC wherF<d>Fg. Reading values from Table II, the
away from at least two different points on the minimal sur- . .. " <0 ?he F’?' surface structure OCCUrS f;hr

face, so the grain boundaries occur where the uniform spac- , 06a(|K 4 — 0.523,)/K,, while that for the I-Wp oc-

ing used outside the core would cause layer self-intersection, _ 7 :
We have no general principle of why the singularities in ther&urS atL =16.65(|Kz ~0.32%,)/K;. To compare with

core region are domain walls instead of, say, focal conicexPe.r Iment we set.=50a0, whereay is the smectic layer
domains(such as you may find by develo’ping ,a catenoid Spacing. This requirg« ,,/K,=6.6 for the P surface or 2.6

. . for the I-Wp surface. Thus the I-Wp ansatz should be the
For both the P and I-Wp surfaces uniform spacing leads t%table phase at any value ki
disclination walls, as it probably does for all but highly sym- 4
metric surfaces.

Thus, with the aim of avoiding layer compression, we
choose this solution for the core structure, which should As before, we used conjugate-gradient minimization to
serve as an energetic upper bound. The energy of the coexplore the possible smectic configurations. In this case we
will arise from the regular curvature and saddle splay enerrelaxed the parallel boundary conditions, letting the interface
gies within the smectic domains, along with a surface energwyf smectic field and defect line be arbitrary. The results are
at the grain boundaries and a separate line energy in thehown in Fig. 8. The core region resembles our “large-core”
highly distorted regions where the grain boundaries meet. Anodel, except that the defect walls have disappeared at the
conservative estimate of the energy of a tilt-grain boundaryexpense of greater overall compression. Locally, the core
is ~K1a51 per unit areg21] (assuming a melted wall of layers look like focal conics around the defect lines. This
thicknessa, at the defect plane Numerically, the total area result undoubtedly points to configurations close to our
of grain-boundary walls per unit cell in this construction is model but with lower energy, and most likely stable for even
A=1.69.2 for the P surface and=1.36_2 for the I-Wp lower values ofK,,/K;. Due to numerical difficulties, these
surface; the corresponding energies are given in Table Il. Thphases could only be made stable for large valuek/af,
lines at the intersection of grain boundaries are located where 80, so we could not compare configurations in the region
the +1 and+ 1/2 disclinations were in the small-core model of interest.

(22

B. Numerical minimization
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of angle (Pansuet al. reported a 7% deviation over 25°
angle. This indicates the need for further refinement to our
model if it is to explain the current data exactly. The discrep-
ancy in off-peak behavior between our simulations and real
data could arise from some relaxation of our proposed struc-
ture to better accommodate the competing energies. As we
noted in Sec. Ill B, the numerical relaxation of the I-Wp
smectic with paralle(small-corg boundary conditions does
produce the correct off-peak behavior for the diffraction
maxima.

low | I o VI. CONCLUSION

FIG. 8. (Color online@ Numerical minimization results with ar- We have presented a model for smectic blue phases which
bitrary defect boundary conditions. The image shows the core reis stable for physically realizable values K§, and penetra-
gion of a P surface smectic. tion lengthA = K, /B. This work refines that of our previ-

ous papef10] and gives further weight to our proposed or-
V. COMPARISON TO SPECTROSCOPIC DATA ganizing principle of smectics built on minimal surfaces.

Panstet al.[5-7] found through x-ray diffraction that the Unlike the tradit.ion'al blue phaseg,, our ”?Ode' does npt rely
cubic BRyx1 phase showed the strongest diffraction along.on mol_ecular chirality. It would be interesting to add chlrallty_
three mutually orthogonal axes. They also found that th nto this model to see how the length scale alters the equi-
peak wavelength of diffraction decreased away from thes ibrium structure;. We have_ also addressed the.broader ques-
special directions. In order to compare our model to thei ion of geqmetncal frustration between Gaussian curvature
nd smectic order. Our computed structure factor matches

data, we have calculated the expected scattering from fe scattering from the hase and o we remain opti-
smectic blue phase built by our large-core construction. Fig- .~ > 9 Sgal_ P o P
mistic that our construction could be verified, perhaps

ure 9 shows thek-space location of the strongest Fourier

peaks for both a P surface smectic and an I-Wp surfacg‘rough freeze fracture.

smectic. In each case, we sampled the smectic phase on a

cubic grid with 128 points per side. We took the smectic

phase to be 2X37xx,/L, wherex, is the distance of the ACKNOWLEDGMENTS

sample point normal to the minimal surface. We chose this e thank T. C. Lubensky, B. Pansu, and J. P. Sethna for
number of layers to avoid any commensuration effects. Befnyitfy| discussions. This work was supported by NSF Grant

cause there are many layers, this was numerically challengyos, INT99-10017 and DMR01-29804, the Donors of the

ing and a higher precision study is needed, such as the Stu@ptroleum Research Fund Administered by the American

of scattering from triply periodic minimal surfaces by chemical Society, and a gift from L. J. Bernstein.
Garstecki and Hotysf22].

For both structures, and we expect for general minimal
surface smectics, the Fourier peaks were strongest along the,penpix a: ALTERNATE DERIVATION OF CURVATURE
umbilics of the minimal surfaces, i.e., normal to the points at EVOLUTION: LAYERING AND CURVATURE
which the surfaces are flat. The Fourier peaks of the I-Wp FRUSTﬁATlON IN CURVED SPACE
structure are a clear match to the observed x-ray diffraction
of BPs,n1. However, as Fig. @) shows, there is no clear The first result in Eq(5) also follows by considering the
deviation in diffraction maximum wavelength as a function derivative of the mean curvature along the layer normal:

(b)

FIG. 9. Discrete Fourier transform of proposed smectic structures(#lstfor the P surfaced based constructi@s),and(c) are for the
I-Wp construction. Plot$a) and (b) show the largest Fourier components in the positive coordinate octdnspdice. Plofc) shows the
largest Fourier components in the positive coordinate quadrant d€,th@ plane. Point size is proportional to the Fourier coefficient at

thatk.
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D-[(N-D)N—N(D-N)]=D;[N'D;N'=N'D;N']
=(D;N'D;N'—D;N'D;N)
+NI[D;,D|IN;. (A4)

The first term in Eq.(A4) is —2Kg, a factor times the
Gaussian curvature. Note that in flat space, the covariant de-
FIG. 10. One patch being uniformly translated along its normal.fivatives become simple derivatives and commute. In curved
The top and bottom surfaces along with the perpendicular surfacespace this is no longer true and the commutator term is just
generated by the normals at the boundaries makes an integratidfyy, the component of the Ricci tensor in the normal-
volume V. normal direction. The evolution equation fa¢g is un-
changed since Stoke'’s theordproperly modified holds in
9H 1 1 1 curved space. Thus in curved space we have
£=(N'V)[EV~N}=§V-[N(V-N)]—§(V-N)2.

(A1) Ke__
A 2KgH,
When the layers are built by developing surfaces parallel to a
fiducial surface, the layer normals do not change—in other 5
words, since we are translating the surface parall® tove 72~ Ke=2H"= 5 Rwn. (A5)
must have N-V)N=0 [23]. Adding this term to Eq(Al)
we have

Thus we can have uniformly spaced layers with-0 and
Kg constant Kg may vary in the layer, but will not change
from layer to layer if we embed the smectic in a space with
Ryn=2K¢. Since we are considering surfaces whly
(A2) <0, this suggests a space with negative curvature.

To see this, we consider a special coordinate system in a

Similarly, consider a patch on one layer and the correspondhree-dimensional layered structure. For unbroken layers we
ing patch on a uniformly translated surface as shown in Figéan uniquely define the continuous variadlewhich labels

10. Because the principle directions of the two surfaces arée layers. Furthermore, we can ubeas a local coordinate
unchanged, the geodesic curvature of the correspondirg’ define a coordinate basis in which one basis veejos
boundaries are identical. It follows from the Gauss-Bonneflual to the directional derivative i, and the other basis
theorem thatfy, KgdA is the same on the two patches. VECtOrse; ande, lie in planes of constan®. This coordi-
Thus, over the volum¥/ swept out by making the translated nate system is knov_vn as Gaussian .normal coordirfa@tsis
patch (shown in Fig. 10, [ KcN-dA=0. Therefore, F_urthermore, for uniform layer spacing the_measurement of
V. (KgN)=0 and distance alonge; cannot depend on coordinates 1 and 2.

This, plus the orthogonality oé; lets us scale our coordi-
nates such thags =e;3- €= &3 .

ﬁH—lv NVN—NVN—1VN2—K —2H?
E—E'[(')(')]E(')—G .

0=N-VKg+KgV-N, Since we are using a coordinate basis, the covariant de-
rivative is defined with the typical connection coefficients

IKg I . Elementary considerations relate the connection coef-

0= A +2KgH. (A3) ficients to the extrinsic curvature tensors of the layers taken

as two sheets

The intrinsic frustration between curvature and uniform
layer spacing can be relieved by considering layered systems
in curved space, just as double twist in the classical blue
phases can fill the surface of the three-dimensional sphere I'is3=I'33=1'33=0. (AB)
without defectg[24]. It is straightforward to see this using
the derivations above. In curved space, we simply replackaborious but autonomic calculations show that the Ricci
derivatives withcovariantderivatives, so thaV? —D, where  scalarR=2Ryy and so the space has negative scalar curva-
D is the covariant derivativg25]. The mean curvature id ture. This is not surprising: in the classical blue phases the
=1D;N' and is essentially unchanged. However, the relatiorsaddle splay elastic constant needed tgbsitive favoring
between Gaussian curvature and saddle splay is more subtfgositive Gaussian curvature, and the resulting structure could
Recall that in flat space, the coefficients of the two terms irbe defect-free in positively curved space. We have merely
the saddle splay are constrained so that the saddle splay oriifipped the signs” on the last sentence. Further work on
depends on first derivatives ®f. We shall see that this is flattening the hyperbolic space inf® would be interesting
spoiled in curved space. We have and may shed light on the preferred lattices.

Kij:F3ij:_Fi3j:_Fj3i for |,J?53,
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The reverse mapping between the complex plane and the
minimal surface itself can be expressed via a single generat-
ing functionR(w, ). In terms ofR(w,w), displacements on
the minimal surface are

(b)

dx'=Rd (1— 0?)R(w,w)dw],
dx?=—Im[(1+ 0)R(w,w)dw],

dx®*=—-2 R4 wR(w,w)dw]. (B2)

FIG. 11. Weierstra® representation of the P surféeand the The relative coordinates of points on the surface can be

o ) found by integrating Eq(B2).
-Wp surface, (b). The Shad.ed region in each is 1/48 part of the To complete our reparametrization of Eg1) in terms of
pictured surface repeat unit and contains all the symmetry of the

entire surface. The points represent the locationwefO for the w, we quote exp.ressmns for other quantities of interest on
. ) o the surfacd19,20:
Weierstral3 mappings given in Table II.
_ |2 242
= +
APPENDIX B: WEIERSTRAR REPRESENTATION dA=|R(w,®)[(1+]o[*) dodr,
OF MINIMAL SURFACE KG=—4|R(w,5)|_2(1+|w|2)_4. (B3)

The Weierstral3 representation of minimal surfaces relies The Weierstra representations for the surfaces we con-
on the fact that there is locally a one to one mapping from &;qer are given in Table II. For the P surfage=0 (z=

minimal surface onto the unit sphere via the surface normal_ | 5, the unit sphejecorresponds to the point indicated in
[19]. The unit sphere can, in turn, be mapped onto the COMEjg 11(a). The entire shaded region in Fig. (&l which is
plex plane by stereographic projection, with the plane PaSS1/48 of the P surface repeat cell, maps to the region on the
ing through the equator of the sphere. The latter mapping,;; sphere bounded by the intersection of the sphere with
gives the co_mponents o_f the surface normal in terms of the, . planesx=0, y=0, z=—x, andz=—vy. For the I-Wp
complex variableo=o+i7 as surface, the position ofo=0 is shown in Fig. 1(b). The
shaded region is again 1/48 of the I-Wp repeat cell and cor-
. (BY) responds to the region on the unit sphere bounded by the
1+|w|? planesx=0, y=0, z=x, andz=\2y—x.

_ 2Rew N 2Imow _1—|w|2
Y lte)2 7 1+4|wf?
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