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Smectic blue phases: Layered systems with high intrinsic curvature

B. A. DiDonna and Randall D. Kamien*
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, USA

~Received 7 July 2003; published 13 October 2003!

We report on a construction for smectic blue phases, which have quasi-long-range smectic translational order
as well as three-dimensional crystalline order. Our proposed structures fill space by adding layers on top of a
minimal surface, introducing either curvature or edge defects as necessary. We find that for the right range of
material parameters, the favorable saddle-splay energy of these structures can stabilize them against uniform
layered structures. We also consider the nature of curvature frustration between mean curvature and saddle
splay.
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I. INTRODUCTION

Topological defects and liquid crystal phases are ho
lessly intertwined. Historically, the nematic phase deriv
it’s name from the observation of long disclination lines.
some liquid crystal phases, such as the twist-grain-bound
~TGB! phases and blue phases, these defects are not si
artifact or nuisance, but instead act to stabilize the direc
field configuration. While the TGB phases have smectic
der, the blue phases have purely nematiclike order create
a long range, triply periodic lattice of line defects. Two of t
nematic blue phases possess cubic symmetry~BP1 and BP2!,
while the third ~BP3! is thought to be an isotropic melt o
double-twist cylinders@1,2#. Recently, new phases of matt
have been identified that possess the quasi-long-range t
lational order of smectics@3# in addition to three-
dimensional orientational order. These phases, dubbed
‘‘smectic blue phases,’’ have been observed for molecule
the chiral series FH/FH/HH-nBTMHC, wheren is the ali-
phatic chain length. Three distinct smectic blue phases h
been observed near the isotropic transition of these c
pounds: BPSmA1 has cubic symmetry, BPSm2 has orthorhom-
bic symmetry, and BPSm3 is isotropic@4#. The precise physi-
cal properties of these materials have been the study
intense investigation in recent years@4–7#.

In general, since smectic order is incompatible with cu
symmetry, it is expected that any triply periodic crystalli
structure must include smectic dislocations as well as dis
nations. However, attempts to construct smectic double-t
cylinders@8# and assemble them into traditional blue pha
structures@9# present a variety of difficulties, most notably
disagreement with precise experimental details@6#. In previ-
ous work @10# we proposed a model for the smectic bl
phases. Our construction filled space with concentric m
mal surfaces wrapping a lattice of intersecting line defe
We found that when the saddle-splay constant was la
enough, these new structures were stable. Though the
materials were chiral, our construction did not rely on ma
roscopic chirality as in the traditional blue phases. Inste
the smectic compression and bending energies set the le
scale of our solutions.

*Electronic address: kamien@physics.upenn.edu
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Here, we refine our earlier model through variations
the original construction. We find that by allowing edge d
locations our phase is stabilized for even small~negative!
values of the saddle-splay constantK24. This paper is orga-
nized as follows. In Sec. II we discuss the rotationally inva
ant energetics of layered systems and derive detailed e
tions for the geometric frustration between curvature a
uniform layer spacing. Next, in Sec. III, we calculate t
energy and stability of likely smectic structures based on
original construction@10#. To supplement our analytical ca
culations, we present the results of simplified numerical
lutions for the three-dimensional smectic structure, wh
explore relaxation of the smectic layers away from our co
structions. In Sec. IV we present a construction for fillin
space based on uniform layer spacing away from a mini
surface. First we derive formulas for the evolution of curv
ture fields in layered space and then we employ the We
straß analytic representation of minimal surfaces to calcu
the energies for our proposed phase. We complete our
scription by calculating the core energy and argue that
grain boundaries form at the cores of our structures. Num
ics are also presented for this construction. Finally, in Sec
we calculate the Fourier transform of the smectic density
compare it with experimental x-ray results. In Appendix
we derive curvature evolution equations in curved space
in Appendix B we review the Weierstraß representation
completeness.

II. ENERGETICS AND CONSTRUCTION

The similarity between the crystal structures and ph
diagrams of the nematic and smectic blue phases sugg
that, like the nematic blue phases, the smectic phases
stabilized through saddle splay. The key to our construct
is the observation that saddle splay and Gaussian curva
are identical@11# for layered systems with uniform spacing
The saddle-splay energy of a unit director fieldN is @9#

FSS5K24E d3x“•@~N•“ !N2N~“•N!#, ~1!

whereK24 is a Frank constant. In a layered system, we c
rewrite the expression forFSS in a more useful form by
employing a local coordinate system where one direction
©2003 The American Physical Society03-1
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B. A. DiDONNA AND R. D. KAMIEN PHYSICAL REVIEW E 68, 041703 ~2003!
parallel to the local layer normalN. This frame is appropri-
ate in the limit where the nematic director and the lay
normal are locked. Then Eq.~1! becomes

FSS522K24E dn E dx dyAgn~x,y! an~x,y!Kn~x,y!,

~2!

wheren is the Lagrangian coordinate which labels the laye
an(x,y) is the local layer spacing at (x,y), Kn is the Gauss-
ian curvature of thenth surface, andgn is the determinant of
the two-dimensional, induced, surface metric. In the spe
case thatan(x,y) is constant, the integral becomes pure
topological: a consequence of the Gauss-Bonnet theo
@11# is that for a surface of genusg, the integrated Gaussia
curvature is 4p(12g). Sinceg.0 for any infinite surface
@12#, FSS is large and negative whenK24,0 and the unit
cells contain surfaces with large genus, i.e., many han
and holes. Note that here, the saddle splay is a measure o
layer normals and not the nematic director. When the ne
atic director follows the layer normal these are, of cour
equivalent. As discussed in Ref.@10#, in type-II smectics it is
possible for the saddle splay of the director field to differ
its precise numerical value from the saddle splay in the l
ers.

In addition to the saddle splay, we must include the ro
tionally invariant bulk free energy

FSm5E d3xH B

4
@~“F!221#212K1H2J , ~3!

where the smectic density isr}cos(2pF/a0), F(x,y,z) is a
phase field,a0 is the layer spacing,B is the compression
modulus, K1 is the bend modulus, andH5 1

2“•N is the
mean curvature of the layers. If the two principle curvatu
arek1 andk2 , KG5k1k2, andH5(k11k2)/2 @11#.

Together, Eqs.~2! and ~3! favor configurations with uni-
form layer spacing, low mean curvature, and high Gauss
curvature. However, there is an unavoidable geometric f
tration between these three terms. When a surface is
placed along its normal byda, the changes in the metric an
curvature tensors are@13#

dgi j 52k i j da,

dk i j 52¹i¹jda1k ikk j
kda. ~4!

It is straightforward to find the variation in the mean a
Gaussian curvatures:

dH5@KG22H2#da2 1
2 gi j ¹i¹jda,

dKG522KGHda2k̃ i j ¹i¹jda, ~5!

where¹i is the covariant derivative on the surface andk̃ i j

[e ike j l kkl /ugu, wheree i j is the completely antisymmetri
tensor.

If we impose smectic order, thena may also be inter-
preted as the normal distance between adjacent layers. W
the spacing is uniform,N•“F is constant and¹ida50. In
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this case, the first result in Eq.~5! implies ]H/]a50 if and
only if the principal curvaturesk i satisfy

k1
21k2

250, ~6!

i.e., k15k250. Thus ifKGÞ0 and the layer spacing is un
form, then]H/]aÞ0; Gaussian curvature leads to mean c
vature.

For uniform spacing the evolution equations become p
ticularly simple. The variationda is constant and the equa
tions can be integrated:

H~a!5
H1aKG

112aH1a2KG

,

KG~a!5
KG

112aH1a2KG

. ~7!

Alternatively, this evolution follows from the observatio
that if the principle radii of curvature areR15k1

21 and R2

5k2
21 for one surface then the radii for the surface displac

by a along the local normal areRi(a)5Ri1a. Thus, in lay-
ered systems, Gaussian curvature in one region implies m
curvature in another. Furthermore, as we continue to deve
the initial layer, there will be a curvature singularity at
distancea5(2H6AH22KG)/KG normal to the original
surface, i.e., at one of the radii of curvature.

With these geometric constraints in mind, we construc
solution which strikes a promising balance between m
and Gaussian curvatures. To do this, we build the sme
order by adding layers on top of a triply periodic minim
surface. By starting with a minimal surface, we bias o
structures to have a low total mean curvature energy. In R
@10#, we based our construction on the Schwartz P surfa
pictured in Fig. 1~a!. In this paper, we present calculation
for both the P surface and Schoen’s I-Wp surface, picture
Fig. 1~b!, a surface with a larger genus and thus a m
negative saddle splay energy. The P surface is an arche
triply periodic minimal surface and will provide a basis
comparison with earlier results, while the I-Wp surfa
shares the symmetries of experimental SmBP systems@6#; the
latter will also prove to be more stable than the P surface.
will consider two variations of this construction: in the fir
we will allow the layer spacing to vary, while in the secon

FIG. 1. Minimal surface repeat units:~a! P surface,~b! I-Wp
surface.
3-2
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FIG. 2. ~Color online! In ~a!
we show the P surface translate
inward until self-intersection. In
~b! and ~c!, the I-Wp surface is
translated inward and outward, re
spectively. Figures~d! and ~e! in-
dicate the line defect structure fo
our construction, based on skelet
graphs.
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we do not. In the former we find that the cores are compo
of topological line defects, while in the latter we find th
domain walls form in the relatively larger cores.

III. SMALL-CORE MODEL: SELF-SIMILAR LAYERING

A. Geometric construction

In this section we consider space-filling, layered stru
tures in which each layer is continuous and every layer
the same global topology. We begin with a minimal surfa
and devise an explicit construction for filling the region aw
from that surface. We note that our bulk phase must con
line defects, since at some point the curvature will diver
as is implied by Eqs.~7!. By design, the layers immediatel
surrounding these line defects will have the same topolog
the original surface. Therefore, the next logical step in
construction is to guess the optimal line defect structure.

Besides selecting the correct topology, we should cho
a defect complexion that minimizes the compression ene
in the region between the minimal surface and the defect
should, as much as possible, be equidistant from the min
surface at each point. Thus, an ansatz for the optimal st
ture is generated by uniformly translating the minimal s
face along its normal until it self-intersects, as shown in F
2. The line defects will be disclinations of charge11 or
11/2. In the case of charge11 disclinations the layers im
mediately surrounding them are tight cylinders. From F
2~a!, we see that the defects in the P surface are all11.
From Figs. 2~b! and 2~c!, we see that the defects inside th
I-Wp surface should have charge11, but that outside, the
translated layer approaches itself in a plane rather than
line and so the disclination charge is11/2. Figures 2~d! and
2~e! show our proposed defect structures. For the de
structure outside the I-Wp surface, the location of the in
section of defect lines is a variable chosen to minimize
total compression energy. It should be noted that in the c
where all defects happen to be charge11, our requirements
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of topology and equal spacing are exactly those best satis
by the skeletal graph of the minimal surface@14#. We take
the core region around the defect lines to have a radiu
ordera0, the smectic layer spacing. We model the core a
melted region of smectic with a free energy arising from t
condensation energy.

Finally, we fill the region between minimal surface an
defects with continuous layers. We desire to have as li
mean curvature as possible in this region, so we fill the
gion with dilated copies of the original minimal surface.
order to do this, we must cut the continuous minimal surfa
into smaller patches: we cut the surface along lines wh
one surface tangent is parallel to the line defect structure,
dilate it so that it shrinks onto the vertices where defect lin
meet. The separated minimal patches are connected tog
by cylindrical patches parallel to the line defects. When th
are disclinations, we must also add some flat patches to c
plete the surfaces. Thus the surface tangents are contin
everywhere, and the intermediary structures transfo
smoothly from the minimal surface on the outside to a se
cylinders surrounding line defects on the inside. This co
struction fills space completely, at the expense of unifo
spacing. Moreover, we have filled a large part of space w
minimal surfaces and so the curvature energy is likely to
as small as possible, given the necessary curvature defe

Figure 3 shows how this construction works for the P a
I-Wp surfaces. For the P surface it is particularly simple;
construction is shown in Fig. 3~a!. The line defects are along
the edges of the unit cell and through the center paralle
the edges. The inside of the P surface is filled with dila
copies of the P surface repeat unit, cut at its intersection w
the walls of the unit cell. The edges of the dilated P surfa
copies are connected to neighboring cells with cylinders. T
outside of the P surface is a translated copy of the inside.
I-Wp surface is more complicated, requiring different co
structions for outside and inside as well as having both11
and11/2 defects. Figure 3~b! illustrates the construction in
3-3
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FIG. 3. ~Color online! Small-core construction:~a! Partial layers inside the P surface,~b! one layer inside the I-Wp surface, and~c! partial
layer around one octant outside the I-Wp surface. Each color corresponds to a different connected layer. In~b! and ~c!, the boundaries
between minimal surface patches, cylinders, and planes are drawn in heavy black. The defect networks and vertex points are al
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side the I-Wp surface: the minimal surface is divided at c
that can be smoothly attached to cylinders, then dilated
wards either the center or corners of the unit cell. Figure 3~c!
shows the construction outside the I-Wp surface. The sur
is cut along its mirror symmetry planes,x5y, x52y, y
5z, etc. andx50, y50, andz50. The resulting patche
are dilated around the proper vertices in Fig. 2~e!. The edges
of the patches are connected together with cylinders par
to the11/2 edge defects. Finally, the free edges of the c
inder are connected together into planes.

Most of the energetics of this structure are simple to c
culate; exact values are tabulated in Table I. It is instruct
to derive approximate expressions for these energies so
we may quickly assess the feasibility of a given minim
surface as a starting point for our construction.

The total curvature energy comes from the contribution
the cylindrical connecting patches. Since the cylinders
come progressively longer to connect the ever shrink
minimal surfaces, the bending energy of the cylinder of
dius r is proportional to (R2r ), the length. We find that

FB'
1

2
K1E l ~R2r !

Rr
dr du

'pK1F (
l ines

l ici
2GF lnS ^R&

rc
D1S rc

^R&
21D G , ~8!

where the sum is over defect lines,l i is the length of linei, ci
is the charge of the defect,rc is the core diameter of the lin
defect, and̂ R& is the characteristic radius of the cylindric
regions. This form allows us to consider other structu
without relying on the details of the fiducial surface and ju
on the rough length scalêR &. The core energy, which is
simply a condensation energy density, is approximately
04170
s
o-

ce

lel
l-

l-
e
at

l

f
-

g
-

s
t

Fcore'«F (
l ines

l ici
2G S 12

rc

^R& D1«
L3

^R&3

rc

p
, ~9!

where« is a line tension. The first term is the energy of t
defect lines, the second is the energy of the central, me
region around vertices in the defect network. Again, we ha
used the characteristic radius^R& to allow us to generalize
the discussion of the energetics.

Since the saddle splay is a surface term, we calculate i
integrating the strength of the nematic defects along the t
length of defect core. Because the saddle splay is a t
divergence, the volume integral becomes a surface inte
around the defect:

FSS52K24E H dS'2pK24F (
l ines

l ici G S 12
rc

^R& D . ~10!

Comparison to Eq.~8! shows that these smectic structur
will favor charge11/2 structures when possible. Also, for a
constructions which only utilize11 defects, the ratio of
saddle splay to curvature energy will be approximat
2K24/K1.

The only energy not explicitly determined by our co
struction is the compression energy. Though the layerin
largely constrained, there is still one free variable whi
gives the relative dilation of consecutive surfaces. We m
mize the compression energy with respect to the rela
smectic layer spacing as a function of position. In the f
lowing we show how we can take advantage of the dilatio
symmetry of our construction to greatly simplify the exa
calculation of optimal compression energy.

First we consider the compression energy in a subreg
which is filled with self-similar, radially dilated patches o
minimal surface. Each successive layer in this region i
nit cell
TABLE I. Smectic energy per unit cell for P and I-Wp surface constructions. The first column gives the topological genus per u
of the structure.FB is the total curvature energy,FSS is the saddle splay,Fcore is energy of the defect cores, andFC is the total compression
energy.

Surface Genus FB /(K1L) FSS/(uK24uL) Fcore /« FC /(BL3)

P 3 6p@ ln(L/4rc)1(4rc /L21)# 212p(124rc /L) 6(L24rc)1(64/p)rc 4.3231022

I-Wp 7 31.7@ ln(L/6.3rc)1(6.3rc /L21)# 268.9(126.3rc /L) 9.05(L26.1rc)172.2rc 4.8531022
3-4
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SMECTIC BLUE PHASES: LAYERED SYSTEMS WITH . . . PHYSICAL REVIEW E68, 041703 ~2003!
smaller version of the last, and all are centered on a comm
origin. Thus, if the radial coordinates of the outermost s
face of this region are specified by a functionr 0(u,f), then
the radial coordinates of any interior surface are given br
5zr 0(u,f), where zP@0,1# parametrizes the layers. Fu
thermore, every point within this region has a unique va
of u, f, and z, and conversely the values ofu, f, and z
uniquely specify the position of any point in the region,
we can use these three variables as a coordinate frame o
patch. In these coordinates, each layer is a surface of
stantz.

In the continuum description of the smectic, the layers
surfaces of constantF. SinceF is constant on each smect
layer, which is, in turn, a layer of constantz, it follows that
F5F(z) is purely a function ofz. Our goal is to find the
form of F(z) which minimizes the compression energy. Th
is nontrivial, since the compression energy goes as“F,
which is not purely a function ofz. However, we can find a
combination ofu“Fu times a function of angle which to
gether is constant over each smectic layer. First we obs
that

F~z!5FS r

r 0~u,f! D⇒ ]

]z
F~z!5r 0~u,f!

]

]r
FS r

r 0~u,f! D .

~11!

Then we note that for level surfaces ofF the field of unit
normals isN5“F/u“Fu to write

~r•N!u“Fu5r
]

]r
FS r

r 0~u,f! D
5

r

r 0~u,f!

]

]z
F~z!

5z
]

]z
F~z!. ~12!

This shows that the combination (r•N)u“Fu depends only
on z, and so is constant over each smectic layer. We
therefore write

~“F!25p~u,f!D~z!, ~13!

with

p~u,f!5F r0~u0 ,f0!•N~u0 ,f0!

r0~u,f!•N~u,f! G2

, ~14!

D~z!5AN@“F#2uz,u0 ,f0
, ~15!

where (u0 ,f0) is a reference direction andAN is a normal-
ization constant which adjusts for differences between re
ence directions on different patches. The absolute valu
AN is unimportant, but its relative value on different surfa
patches must be chosen for a consistent definition ofD(z)
across the entire smectic surface. Thus we have separate
angular dependence out of the volume integral of“F. The
result is
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FC patch5
1

2
BE dz@z2$I 022I 1D~z!1I 2D2~z!%#, ~16!

whereI N are moments of the minimal surface shape,

I N5E dVr 0
3~u,f!pN~u,f!.

Simple consideration shows that a similar separation occ
in regions with cylindrical symmetry, in which caser
5zr 0(f) andu“Fu is independent of the localz coordinate.
The equations are similar to the above. Numerical val
were calculated with the aid of theSURFACE EVOLVERsoft-
ware package@15#. We minimize the totalFC by varying
with respect toD(z). The results are tabulated in Table
The total compression energy had only a very weak dep
dence on the core sizea0 for a0!L.

Calculations of the compression energy depend greatly
the particulars of the surface shape, so we cannot give
accurate approximate expression forFC . In general, how-
ever, the total compression energy should increase rap
with genus. Since all layers in this construction have
same topology, there must be just as many layers in the
lindrical regions, of radiuŝR&, as there are in the minima
surface patch regions, which have typical radius of or
L/4. As the genus increases, the number of cylindri
handles increases, as will the difference between^R& and
L/4. This, in turn, will increase the overall compression e
ergy.

For our proposed smectic structure to be stable agains
uniform flat phase, the positive energy contributions fro
FC , FB , andFcore must be compensated by a large negat
saddle splay energy. Since there is no chirality in our c
struction, the unit cell length can only arise as a result of
different scalings of these energies. We found that the sca
competition between the core and saddle splay energies

FIG. 4. Stability diagram for unit cells withL550a0. Our con-
structions based on P and I-Wp surfaces can be stabilized ag
flat layering in the regions of parameter space to the upper righ
the, respectively, labeled lines. The quantityl[AK1 /B is the pen-
etration length.
3-5
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FIG. 5. ~Color online! Numerical minimization results with parallel defect boundary conditions. Images~a! and ~c! show two different
smectic layers for a relaxed configuration of the I-Wp surface. Surface coloring is proportional to local curvature energy density, w
and violet denoting the highest values. Plot~b! shows the strongest Fourier components in thekz50 plane for this smectic configuration
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capable of generating a length scale ofL550a0, giving a
preferred cell size for the P and I-Wp surfaces of the orde

NP5
L

a0
'

12puK24u1@16/p26#«

2puK24u2«
, ~17!

NI -Wp5
L

a0
'

72uK24u22.8«

7.6uK24u2«
. ~18!

We compare the total energy of the minimal surface sm
tics against that of uniform smectic configuration. Figure
shows the exact stability diagram of both the P and I-W
surfaces, assuming a crystal unit cell lengthL550a0 to
make contact with experiment. There are stable solution
the P surface smectic for values ofuK24u/K1.6.5 and for the
I-Wp surface smectic for values ofuK24u/K1.2.7.

B. Numerical minimization

In order to study elastic relaxation away from our simp
fied construction, we performed a numerical minimization
the smectic energetics of Eqs.~1! and ~3! on a three-
dimensional grid. The smectic field was represented b
single value of the phaseF at each point on a 41 or 128 un
cubic grid with periodic boundary conditions. Discretize
energy expressions were used to calculate the local value
compression, curvature, and saddle splay energy. We m
ally put line defects into our lattice which forced the P su
face or I-Wp surface topology, similar to the analysis in R
@16#. The energy was then minimized by the conjuga
04170
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gradient method. Because of the troublesome nature of
fining and allowing defects in such a phase field simulati
as well as the relatively small grid size, the numerical valu
in these simulations cannot be considered precise. Howe
study of the numerical minimal energy configurations a
instructive for both validating and expanding upon our mo
els.

We imposed parallel boundary conditions on the sme
field at the defect lines~in other words, the defect lines be
come surfaces of constant phase!. This corresponds to ou
‘‘small-core’’ construction. The results are pictured in Fig.
The shading indicates local bending energy density.
B/K1 relatively small, the middle surface between inner a
outer defect lattices is close to a minimal surface. For lay
away from the middle surface, such as that pictured in F
5~a!, the curvature energy is concentrated around the cy
drical regions, while the remaining areas are close to m
mal surfaces. Figure 5~b! shows the strong Fourier compo
nents in thekz50 plane for the I-Wp surface smectic. Th
numerically relaxed configurations for moderate values
l[AK1 /B'1 andL/a0'40 layers per unit cell had a struc
ture reminiscent of the experiments of Pansuet al. @6#: in
their data they found that in an angular scan away from
maximum peaks the maximum intensity moved out to lar
magnitudes in reciprocal space. We find this same off-p
increase forukmax(u,f)u for the relaxed configurations in
this model.

For higher values ofB/K1, such as in Fig. 5~c!, the
smoothly curved regions of our construction start to beco
e
re
FIG. 6. ~Color online! A one
parameter model for curvatur
condensation to balance curvatu
and compression energies.
3-6
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faceted, with the curvature condensing onto discrete fo
This is not unlike the condensation of curvature found
crumpled elastic sheets@17#. Motivated by this apparen
tradeoff between curvature and compression energies, we
amined the model for relaxation pictured in Fig. 6, in whi
the regions of high curvature become more concentrate
space while the remaining overall surface becomes m
polyhedral. This model has one continuous parametex
P@0,1# which interpolates between the minimal surfa
model at x51 and a faceted surface with uniform lay
spacing away from tilt-grain boundaries atx50. In this
model, we shrink patches of the minimal surface onto ve
ces of a polyhedron with the same symmetry. The patc
are connected by cylindrical sections, and the remaining a
is filled with flat facets. An expression for the compressi
energy of this structure, using our earlier techniques, is c
plicated, but numerical evaluation for the P surface foun
was well approximated by a simple linear function ofx. The
curvature energy is found by adding up the contributions
the cylindrical regions. We have ignored the complica
nonlinear effects at lowx, so our analysis is valid nearx
51. The resulting combined compression and curvature
ergy density for the P surface smectic is

FB1FC5~4.3231022!xBL3

16pK1LF1

x
ln~L/4rc!1~4rc /L21!G . ~19!

Minimizing in x gives

FIG. 7. ~Color online! Construction of smectic blue phase bas
on uniform layer spacing of the Schwartz P surface. The im
shows a cutaway of the layered structure inside the P surface.
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x5A12pK1 ln~L/4rc!

~4.3231022!BL2
50.94

l

a0
, ~20!

where the last equality is forL550a0. Sincel>a0 and this
treatment is only valid forx<1, we see that curvature con
densation will not happen for our small smectic repeat u
but might occur forL@50a0.

IV. LARGE-CORE MODEL: CALCULATION OF
CURVATURE ENERGIES USING WEIERSTRASS

REPRESENTATION

A. Geometric construction

The large-core variant of our construction begins with
single continuous surface, then adds successive layers w
are equally spaced along the original surface normals. As
showed in Sec. II, the continuation of uniform layer spaci
will eventually lead to singularities. Figure 7 shows the r
sults of this construction for the interior of a P surface s
tion. The initial curvature singularities occurs on the nea
circular interface between unit cells of the P surface: ess
tially, the circular interface shrinks to a point, pinching o
the connection between the interior layers and the outsid
the unit cell. Any further layers within the pinched laye
must be topologically like a sphere, with genus 0. Note t
this layering scheme appears similar to the construction
constant mean curvature~CMC! surfaces@18# but is essen-
tially different; there is no energetic preference for const
mean curvature and the CMC surfaces do not minimize
compression energy. We shall label the normal distance f
the initial minimal surface to the last fully connected surfa
asamax. Since the principal radii of curvature are equal a
opposite for points on the minimal surface, the value
uamaxu will be the same on both sides of the minimal surfac
We call the region within the pinch-off surface, at distan
greater thanamax from the minimal surface, the core regio
since our initial ordering is disrupted in this volume. Outsi
the core, the saddle splay energy per unit cell isFSS
516uK24u(g21)amax. The values ofg and amax for the P
and I-Wp surfaces are given in Table II. Figures 2~a–c! show
the surfaces defined byamax for both minimal surfaces.
Within the pictured surfaces, the continuation of our init
construction produces additional curvature singularities
lines of surface self-intersection. At the end of this sect
we justify a model for the core, which fills it with even laye
joined by tilt-grain boundaries.

By insisting on uniform spacing away from the fiduci
minimal surface, we determine the exact shape of all

e

ves the
e energy,
TABLE II. Surface geometries and energies in the ‘‘large-core’’ construction for the P and I-Wp surfaces. The first column gi
generating function for the Weierstraß representation, followed by the maximum half-thickness of continuous layering, the curvatur
saddle-splay energy, and grain-boundary core energy for this ansatz.

Surface R(v,v̄) amax ~L! FB (K1L) FSS (uK24uL) FGB (K1a0
21L2)

P (1114v41v8)21/2 0.232 12.2 223.3 1.65
I-Wp (v625v425v211)22/3 0.150 14.7 245.2 1.36
3-7
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shape equations of all the layers can be obtained from tha
the original surface if we know how all quantities evolv
with normal displacement. The curvature evolution was
rived in Sec. II. We can also map the area element of
initial surface to that on successive surfaces bydA85dA(1
12aH1a2KG). This allows us to express the curvatu
component of the smectic free energy~3! as

FB54K1E
0

amax
daE dA

~H1aKG!2

112aH1a2KG

, ~21!

where the area integral is taken over the center surface
our case the area integral is over the minimal surface re
cell andH50. We evaluated the surface integral in Eq.~21!
analytically using the Weierstraß representation for the m
mal surfaces@19,20#, as described in Appendix B. Table
gives numerical values for the bending energy using Eq.~21!
and the saddle-splay energies using the Gauss-Bo
theorem and Eq.~2!. In both cases the integration lim
amax corresponds to the value ofa for which H8 in
Eq. ~7! first diverges at some point on the surface. Th
amax5(2KG

min)21/2, with KG
min the minimum ~most nega-

tive! value ofKG on the minimal surface.
All that remains is to find the optimal way to fill th

‘‘core’’ volumes for uau.uamaxu. The shape of these region
is shown in Figs. 2~a–c!. In the core, the continuation o
uniform layer spacing from the minimal surface leads to c
vature singularities and layer self-intersections. However
shown in Fig. 7, we can fill this volume with uniforml
spaced domains of smectic order which intersect each o
in tilt-grain boundaries. Within a domain, each point on
given layer is an equal normal distance away from so
point on the initial minimal surface. Points on the gra
boundaries between domains are an equal normal dist
away from at least two different points on the minimal su
face, so the grain boundaries occur where the uniform sp
ing used outside the core would cause layer self-intersec
We have no general principle of why the singularities in t
core region are domain walls instead of, say, focal co
domains~such as you may find by developing a catenoi!.
For both the P and I-Wp surfaces uniform spacing leads
disclination walls, as it probably does for all but highly sym
metric surfaces.

Thus, with the aim of avoiding layer compression, w
choose this solution for the core structure, which sho
serve as an energetic upper bound. The energy of the
will arise from the regular curvature and saddle splay en
gies within the smectic domains, along with a surface ene
at the grain boundaries and a separate line energy in
highly distorted regions where the grain boundaries mee
conservative estimate of the energy of a tilt-grain bound
is 'K1a0

21 per unit area@21# ~assuming a melted wall o
thicknessa0 at the defect plane!. Numerically, the total area
of grain-boundary walls per unit cell in this construction
A51.65L2 for the P surface andA51.36L2 for the I-Wp
surface; the corresponding energies are given in Table II.
lines at the intersection of grain boundaries are located wh
the11 and11/2 disclinations were in the small-core mod
04170
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of Sec. III. Around these lines the director field varies
rapidly that the smectic order should melt completely, lea
ing a core of radius;a0 and line tension«. The mean cur-
vature energy in the smectic domains is relatively sm
since the shape of the innermost layers is mapped by Eq~7!
from the region around the umbilics~flat points! on the mini-
mal surface. The inner layers are thus nearly flat. We fou
that the curvature energy was negligible by numerical eva
ation.

The saddle-splay energy in the core merits special at
tion. Since the smectic layers in the core are not closed
faces, our simple topological arguments do not apply.
could insist on connecting the surface sections together
natural way across grain boundaries to obtain closed surf
with the topology of a sphere. However, these closed s
faces are nearly polygonal, with all the Gaussian curvat
concentrated at the vertices, or along the lines in three
mensions where the smectic order has melted. Thus,
natural to assume that the smectic order parameter vani
in these linelike cores, and the total saddle splay of the c
is nearly zero. Of course, nematic order would likely pers
inside the core. Since we are focussing here on the sa
splay associated only with the smectic order, i.e., the lo
Gaussian curvature, we have not considered the nem
saddle splay. These two contributions are distinct and add
the latter would be straightforward but would complicate t
discussion.

The dominant free energy terms which determine the
bility and preferred size of this construction are therefore
bend, saddle-splay, and grain-boundary energies. Minimiz
these energies in a unit cell of lengthL gives

L5~ uFSSu2FB!/~2FGB!. ~22!

At this length the phase is stable against the standard,
smectic whenuFSSu.FB . Reading values from Table II, th
minimum for the P surface structure occurs forL
57.06a0(uK24u20.523K1)/K1, while that for the I-Wp oc-
curs at L516.6a0(uK24u20.325K1)/K1. To compare with
experiment we setL550a0, wherea0 is the smectic layer
spacing. This requiresuK24u/K156.6 for the P surface or 2.6
for the I-Wp surface. Thus the I-Wp ansatz should be
stable phase at any value ofK24.

B. Numerical minimization

As before, we used conjugate-gradient minimization
explore the possible smectic configurations. In this case
relaxed the parallel boundary conditions, letting the interfa
of smectic field and defect line be arbitrary. The results
shown in Fig. 8. The core region resembles our ‘‘large-co
model, except that the defect walls have disappeared a
expense of greater overall compression. Locally, the c
layers look like focal conics around the defect lines. Th
result undoubtedly points to configurations close to o
model but with lower energy, and most likely stable for ev
lower values ofuK24u/K1. Due to numerical difficulties, thes
phases could only be made stable for large values ofL/a0
.80, so we could not compare configurations in the reg
of interest.
3-8
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SMECTIC BLUE PHASES: LAYERED SYSTEMS WITH . . . PHYSICAL REVIEW E68, 041703 ~2003!
V. COMPARISON TO SPECTROSCOPIC DATA

Pansuet al. @5–7# found through x-ray diffraction that the
cubic BPSmA1 phase showed the strongest diffraction alo
three mutually orthogonal axes. They also found that
peak wavelength of diffraction decreased away from th
special directions. In order to compare our model to th
data, we have calculated the expected scattering from
smectic blue phase built by our large-core construction. F
ure 9 shows thek-space location of the strongest Fouri
peaks for both a P surface smectic and an I-Wp surf
smectic. In each case, we sampled the smectic phase
cubic grid with 128 points per side. We took the smec
phase to be 2p3373xn /L, wherexn is the distance of the
sample point normal to the minimal surface. We chose
number of layers to avoid any commensuration effects.
cause there are many layers, this was numerically challe
ing and a higher precision study is needed, such as the s
of scattering from triply periodic minimal surfaces b
Garstecki and Hołyst@22#.

For both structures, and we expect for general minim
surface smectics, the Fourier peaks were strongest alon
umbilics of the minimal surfaces, i.e., normal to the points
which the surfaces are flat. The Fourier peaks of the I-
structure are a clear match to the observed x-ray diffrac
of BPSmA1. However, as Fig. 9~c! shows, there is no clea
deviation in diffraction maximum wavelength as a functi

FIG. 8. ~Color online! Numerical minimization results with ar
bitrary defect boundary conditions. The image shows the core
gion of a P surface smectic.
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of angle ~Pansuet al. reported a 7% deviation over 25
angle!. This indicates the need for further refinement to o
model if it is to explain the current data exactly. The discre
ancy in off-peak behavior between our simulations and r
data could arise from some relaxation of our proposed st
ture to better accommodate the competing energies. As
noted in Sec. III B, the numerical relaxation of the I-W
smectic with parallel~small-core! boundary conditions doe
produce the correct off-peak behavior for the diffracti
maxima.

VI. CONCLUSION

We have presented a model for smectic blue phases w
is stable for physically realizable values ofK24 and penetra-
tion lengthl[AK1 /B. This work refines that of our previ
ous paper@10# and gives further weight to our proposed o
ganizing principle of smectics built on minimal surface
Unlike the traditional blue phases, our model does not r
on molecular chirality. It would be interesting to add chirali
into this model to see how the length scale alters the e
librium structures. We have also addressed the broader q
tion of geometrical frustration between Gaussian curvat
and smectic order. Our computed structure factor matc
the scattering from the SmBP1 phase and so we remain opt
mistic that our construction could be verified, perha
through freeze fracture.
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APPENDIX A: ALTERNATE DERIVATION OF CURVATURE
EVOLUTION; LAYERING AND CURVATURE

FRUSTRATION IN CURVED SPACE

The first result in Eq.~5! also follows by considering the
derivative of the mean curvature along the layer normal:

e-
at
FIG. 9. Discrete Fourier transform of proposed smectic structures. Plot~a! is for the P surfaced based construction,~b! and~c! are for the
I-Wp construction. Plots~a! and ~b! show the largest Fourier components in the positive coordinate octant ofk space. Plot~c! shows the
largest Fourier components in the positive coordinate quadrant of thekz50 plane. Point size is proportional to the Fourier coefficient

that kW .
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]H

]a
5~N•“ !F1

2
“•NG5

1

2
“•@N~“•N!#2

1

2
~“•N!2.

~A1!

When the layers are built by developing surfaces parallel
fiducial surface, the layer normals do not change—in ot
words, since we are translating the surface parallel toN, we
must have (N•“)N50 @23#. Adding this term to Eq.~A1!
we have

]H

]a
5

1

2
“•@N~“•N!2~N•“ !N#2

1

2
~“•N!25KG22H2.

~A2!

Similarly, consider a patch on one layer and the correspo
ing patch on a uniformly translated surface as shown in F
10. Because the principle directions of the two surfaces
unchanged, the geodesic curvature of the correspon
boundaries are identical. It follows from the Gauss-Bon
theorem that*M1,2

KGdA is the same on the two patche
Thus, over the volumeV swept out by making the translate
patch ~shown in Fig. 10!, *VKGN•dA50. Therefore,
“•(KGN)50 and

05N•“KG1KG“•N,

05
]KG

]a
12KGH. ~A3!

The intrinsic frustration between curvature and unifo
layer spacing can be relieved by considering layered syst
in curved space, just as double twist in the classical b
phases can fill the surface of the three-dimensional sp
without defects@24#. It is straightforward to see this usin
the derivations above. In curved space, we simply repl
derivatives withcovariantderivatives, so that“→D, where
D is the covariant derivative@25#. The mean curvature isH
5 1

2 DiN
i and is essentially unchanged. However, the relat

between Gaussian curvature and saddle splay is more su
Recall that in flat space, the coefficients of the two terms
the saddle splay are constrained so that the saddle splay
depends on first derivatives ofN. We shall see that this is
spoiled in curved space. We have

FIG. 10. One patch being uniformly translated along its norm
The top and bottom surfaces along with the perpendicular surf
generated by the normals at the boundaries makes an integr
volumeV.
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D•@~N•D!N2N~D•N!#5Di@NjD jN
i2NiD jN

j #

5~DiN
jD jN

i2DiN
iD jN

j !

1Nj@Di ,D j #Ni . ~A4!

The first term in Eq.~A4! is 22KG , a factor times the
Gaussian curvature. Note that in flat space, the covariant
rivatives become simple derivatives and commute. In cur
space this is no longer true and the commutator term is
RNN , the component of the Ricci tensor in the norma
normal direction. The evolution equation forKG is un-
changed since Stoke’s theorem~properly modified! holds in
curved space. Thus in curved space we have

]KG

]a
522KGH,

]H

]a
5KG22H22

1

2
RNN . ~A5!

Thus we can have uniformly spaced layers withH50 and
KG constant (KG may vary in the layer, but will not chang
from layer to layer! if we embed the smectic in a space wi
RNN52KG . Since we are considering surfaces withKG
,0, this suggests a space with negative curvature.

To see this, we consider a special coordinate system
three-dimensional layered structure. For unbroken layers
can uniquely define the continuous variableF which labels
the layers. Furthermore, we can useF as a local coordinate
to define a coordinate basis in which one basis vectore3 is
dual to the directional derivative inF, and the other basis
vectorse1 and e2 lie in planes of constantF. This coordi-
nate system is known as Gaussian normal coordinates@25#.
Furthermore, for uniform layer spacing the measuremen
distance alonge3 cannot depend on coordinates 1 and
This, plus the orthogonality ofe3 lets us scale our coordi
nates such thatg3i5e3•ei5d3i .

Since we are using a coordinate basis, the covariant
rivative is defined with the typical connection coefficien
G jk

i . Elementary considerations relate the connection co
ficients to the extrinsic curvature tensors of the layers ta
as two sheets

k i j 5G3i j 52G i3 j52G j 3i for i , j Þ3,

G i335G3i35G33i50. ~A6!

Laborious but autonomic calculations show that the Ri
scalarR52RNN and so the space has negative scalar cur
ture. This is not surprising: in the classical blue phases
saddle splay elastic constant needed to bepositive, favoring
positive Gaussian curvature, and the resulting structure co
be defect-free in positively curved space. We have mer
‘‘flipped the signs’’ on the last sentence. Further work
flattening the hyperbolic space intoR3 would be interesting
and may shed light on the preferred lattices.
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APPENDIX B: WEIERSTRAß REPRESENTATION
OF MINIMAL SURFACE

The Weierstraß representation of minimal surfaces re
on the fact that there is locally a one to one mapping from
minimal surface onto the unit sphere via the surface nor
@19#. The unit sphere can, in turn, be mapped onto the co
plex plane by stereographic projection, with the plane pa
ing through the equator of the sphere. The latter mapp
gives the components of the surface normal in terms of
complex variablev5s1 i t as

N15
2 Rev

11uvu2
, N25

2 Imv

11uvu2
, N35

12uvu2

11uvu2
. ~B1!

FIG. 11. Weierstraß representation of the P surface,~a!, and the
I-Wp surface,~b!. The shaded region in each is 1/48 part of t
pictured surface repeat unit and contains all the symmetry of
entire surface. The points represent the location ofv50 for the
Weierstraß mappings given in Table II.
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The reverse mapping between the complex plane and
minimal surface itself can be expressed via a single gene
ing functionR(v,v̄). In terms ofR(v,v̄), displacements on
the minimal surface are

dx15Re@~12v2!R~v,v̄ !dv#,

dx252Im@~11v2!R~v,v̄ !dv#,

dx3522 Re@vR~v,v̄ !dv#. ~B2!

The relative coordinates of points on the surface can
found by integrating Eq.~B2!.

To complete our reparametrization of Eq.~21! in terms of
v, we quote expressions for other quantities of interest
the surface@19,20#:

dA5uR~v,v̄ !u2~11uvu2!2dsdt,

KG524uR~v,v̄ !u22~11uvu2!24. ~B3!

The Weierstraß representations for the surfaces we c
sider are given in Table II. For the P surface,v50 (z5
21 on the unit sphere! corresponds to the point indicated
Fig. 11~a!. The entire shaded region in Fig. 11~a!, which is
1/48 of the P surface repeat cell, maps to the region on
unit sphere bounded by the intersection of the sphere w
the planesx50, y50, z52x, and z52y. For the I-Wp
surface, the position ofv50 is shown in Fig. 11~b!. The
shaded region is again 1/48 of the I-Wp repeat cell and c
responds to the region on the unit sphere bounded by
planesx50, y50, z5x, andz5A2y2x.
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